On Thompson's Conjecture for Alternating Groups A p+3
نویسندگان
چکیده
Let G be a group. Denote by π(G) the set of prime divisors of |G|. Let GK(G) be the graph with vertex set π(G) such that two primes p and q in π(G) are joined by an edge if G has an element of order p · q. We set s(G) to denote the number of connected components of the prime graph GK(G). Denote by N(G) the set of nonidentity orders of conjugacy classes of elements in G. Alavi and Daneshkhah proved that the groups, A n where n = p, p + 1, p + 2 with s(G) ≥ 2, are characterized by N(G). As a development of these topics, we will prove that if G is a finite group with trivial center and N(G) = N(A p+3) with p + 2 composite, then G is isomorphic to A p+3.
منابع مشابه
New characterization of some linear groups
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
متن کاملSimple groups with the same prime graph as $D_n(q)$
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
متن کاملOn a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملThe Isaacs–Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic
In this paper, we prove that a refinement of the Alperin–McKay Conjecture for p-blocks of finite groups, formulated by I.M. Isaacs and G. Navarro in 2002, holds for all covering groups of the symmetric and alternating groups, whenever p is an odd prime.
متن کاملThe Ubiquity of Thompson's Group F in Groups of Piecewise Linear Homeomorphisms of the Unit Interval1
In the 1960s, Richard J. Thompson introduced a triple of groups F T G which, among them, supplied: the rst examples of innnite, nitely presented, simple groups 14] (see 6] for published details); a technique for constructing an elementary example of a nitely presented group with an unsolvable word problem 12]; the universal obstruction to a problem in homotopy theory 8]; the rst examples of tor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014